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Large-q expansion of the specific heat for the two-dimensionalq-state Potts model
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Osaka Prefectural College of Technology, Saiwai-cho, Neyagawa, Osaka 572, Japan

K. Tabata
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~Received 30 June 1998!

We have calculated the large-q expansion for the specific heat at the phase transition point in the two-
dimensionalq-state Potts model to the 23rd order in 1/Aq using the finite lattice method. The series obtained
allows us to give highly convergent estimates of the specific heat forq.4 on the first-order transition point.
The result confirms the correctness of the conjecture by Bhattacharyaet al. @Nucl. Phys. B435, 526~1995!; J.
Phys. I7, 1155~1997!# on the asymptotic behavior of the specific heat forq→4. @S1063-651X~99!05101-6#

PACS number~s!: 05.50.1q, 02.30.Mv, 75.10.Hk
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Theq-state Potts model@1,2# in two dimensions has bee
investigated intensively as the test ground for analyzing
phase transition in many physical systems. In particular i
interesting because the order of the phase transion cha
from first order to the second order when the parameterq is
varied, that is, first order forq.4 and second order forq
<4. The amplitudes of many quantities at the first-ord
transition point are known exactly, including the free ener
the internal energy@3#, and the correlation length@4–6#. The
correlation length at the transition point increases to infin
as q→4 and atq54 the transition becomes second ord
Physically important quantities such as the specific heat
the susceptibility at the transition point, which also increa
to infinity as q→4 , are not solved exactly. Bhattachar
et al. @7# made a stimulating conjecture on the asympto
behavior of the energy cumulants~including the specific
heat! at the first-order transition point: The asymptotic re
tion of the energy cumulants and the correlation length at
first-order transition point forq→4 will be equal to the one
at the second-order phase transition point withq54 fixed. If
this conjecture is true not only in theq-state Potts model bu
also in general physical systems that have a phase trans
whose order changes from first order to second order w
some parameter of the system is varied, it would give a g
guide in investigating such systems, for instance, the orde
the phase transition. Bhattacharyaet al. @8# also made the
large-q expansion of the energy cumulants to order 10 inz
[1/Aq, with which they could use the conjecture to give t
estimates of the cumulants at the transition point forq>7
that are better than those given by other methods includ
the Monte Carlo simulations@9# and the low-~and high-!
temperature expansions@10–12#. The series obtained b
Bhattacharyaet al. are, however, not long enough to inve
tigate the behavior of the energy cumulants forq close to 4.

In this paper we will enlarge the large-q series for the
specific heat at the transition point to order 23 inz using the
finite lattice method@13–15# instead of the standard graph
cal method used by Bhattacharyaet al. The finite lattice
method can in general give longer series than those ge
ated by the graphical method especially in lower space~and
time! dimensions. In the graphical method, one has to list
the relevant diagrams and count how many appear. In
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finite lattice method we can skip this job and reduce the m
work to the calculation of the expansion of the partitio
function for a series of finite size lattices, which can be do
using the straightforward site-by-site integration@16,17#
without the graphical technique. This method has been u
mainly to generate the low- and high-temperature serie
statistical systems and the strong coupling series in lat
gauge theory. One of the purposes of this paper is to d
onstrate that this method is also applicable to the series
pansion with respect to the inverse of the number of degr
of freedom for each local dynamical variable in a physic
system. The long series obtained here by the finite lat
method enables us to examine the conjecture by Bha
charyaet al. on the asymptotic behavior of the specific he
for q very close to 4. We can also give the estimates of
specific heat for eachq55,6,7, . . . that are much more pre
cise than those given in previous works and they would se
as a target in investigating this model in various contexts,
example, in testing the efficiency of a new algorithm of t
numerical simulation.

The model is defined by the partition function

Z5(
$si %

exp~2bH !, H52(
^ i , j &

dsi ,sj
, ~1!

where^ i , j & represents the pair of nearest neighbor sites
si51,2, . . . ,q. The phase transition pointb t is given by
exp(bt)215Aq. We will consider the free energy density i
the disordered phase, which is given by

Fd~b!5 lim
Lx ,Ly→`

~LxLy!21 ln Zd~Lx ,Ly!, ~2!

where the partition function for theLx3Ly lattice should be
calculated with the free boundary condition corresponding
the disordered phase. The large-q expansion of the partition
function can be given through the Fortuin-Kasteleyn rep
sentation@18# as
186 ©1999 The American Physical Society
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Zd~Lx ,Ly!5qLxLy(
l , j

Nl , j~eb21! lq2 j

5qLxLy(
l , j

Nl , jY
lz2 j 2 l , ~3!

whereNl , j is the number of configurations ofl bonds con-
necting the nearest neighbor sites on theLx3Ly lattice with
LxLy2 j independent clusters of sites andY[(eb21)/Aq.
~Two sites connected to each other belong to the same c
ter.!

We define H( l x ,l y) for each l x3 l y lattice
( l x ,l y51,2,3, . . . ) as@15#

H~ l x ,l y!5 ln@Zd~ l x ,l y!/ql xl y#, ~4!

whereZd( l x ,l y) is the partition function with the free bound
ary condition, and defineW( l x ,l y) recursively as

W~ l x ,l y!5H~ l x ,l y!

2 (
l x8< l x ,l y8< l y

8 ~ l x2 l x811!~ l y2 l y811!W~ l x8 ,l y8!.

~5!

Here the8 indicates that a term withl x85 l x andl y85 l y should
be excluded in the summation. Then the free energy den
defined by Eq.~2! is given by

Fd~b!5 ln~q!1 (
l x ,l y

W~ l x ,l y!. ~6!

We can prove@15# that the Taylor expansion ofW( l x ,l y)
with respect toz andY includes the contribution from all the
clusters of polymers in the standard cluster expansion
can be embedded in thel x3 l y lattice but cannot be embed
ded in any of its rectangular sublattices. Each cluster
contributes to the lowest-order term ofW( l x ,l y) consists of a
single polymer and is of orderzl x1 l y22. An example of such
a single polymer is shown in Fig. 1. Therefore, to obtain
series to orderzN we only have to take into account all th
rectangular lattices that satisfyl x1 l y22<N. If we set Y

FIG. 1. Example of the cluster consisting of a single polym
that contributes to the lowest-order term ofW( l x ,l y) with l x54 and
l y55. The closed circles are the sites and the solid lines and
crosses are the bonds connecting and disconnecting the ne
neighbor sites, respectively, in the Fortuin-Kasteleyn represe
tion.
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511y @19#, then we only have to keep the expansion w
respect toy to orderyn to obtain thenth energy cumulant a
the phase transition point as

Fd
~n!5

dn

dbn
Fd~b!ub5b t

5(
m

am
~n!zm. ~7!

@We note that (d/db)5(11y1z)(d/dy) and y50 at b
5b t .] We can also calculate the series for the energy cum
lant Fo

(n) at b t in the ordered phase by using the dual
relation

Fd
~2!2Fo

~2!52z@Fd
~1!2Fo

~1!#. ~8!

We have calculated the series to orderN523 in z for n
50,1, and 2. The series obtained for the zeroth and fi
cumulants~i.e., the free energy and the internal energy! agree
with the expansion of the exactly known expressions. T
series for the second cumulants are listed in Table I. T
coefficients forFo

(2) agree with those by Bhattacharyaet al.
to order 10.

The latent heatL @3# and the correlation lengthj @4–6# at
the transition point are known, respectively, to vanish and
diverge atq→4 as

L;3px21/2, ~9!

j;
1

8A2
x, ~10!

r

e
rest
a-

TABLE I. Large-q expansion coefficientsam
(2) for the second

energy cumulant.

m am
(2) ~disordered! am

(2) ~ordered!

0 0 0
1 2 0
2 14 16
3 26 34
4 118 114
5 250 254
6 894 882
7 1936 1944
8 6160 6128
9 13538 13550
10 39774 39698
11 88360 88360
12 245188 245036
13 547468 547356
14 1457976 1457784
15 3264012 3263316
16 8410284 8410596
17 18868858 18865590
18 47391870 47395762
19 106180532 106166828
20 261607968 261629456
21 586199668 586145660
22 1415497756 1415594740
23 3174285456 3174081000
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188 PRE 59H. ARISUE AND K. TABATA
with x5exp(p2/2u) and 2 coshu5Aq. Bhattacharyaet al.
@7# made the conjecture thatFd,o

(2) will diverge atq→4 as

Fd,o
~2!;ax. ~11!

This is from the fact that forb→b t with q54 fixed the
correlation length and the second cumulant diverge, res
tively, as j;lub2b tu22/3 and F (2);mub2b tu22/3, so that
j/F (2); const, and the assumption that this relation betw
the correlation length and the second cumulant is also k
for q→4 with b5b t . The constanta in Eq. ~11! should be
common for the ordered and disordered phases from Eqs~8!
and ~9!. Here we follow this conjecture. Then the produ
F (2)L 2 is expected to be a smooth function ofu, so we
apply the Pade´ approximation to this quantity as

Fd
~2!L 25zPM~z!/QL~z!1O~zM1L12!,

Fo
~2!L 25z2RM~z!/SL~z!1O~zM1L13!, ~12!

wherePM(z) andQL(z)@RM(z) andSL(z)] are theM th- and
Lth-order polynomials withM1L11<N@M1L12<N#.
We give in Table II the values of the specific heatCd,o evalu-
ated from these Pade´ approximants for some values ofq and
present in Fig. 2 the behavior of the ratio ofF (2) to x plotted
versusu. The averages and errors are taken from all

TABLE II. Specific heat for some values ofq.

q Cd Co

5 2889~2! 2886~3!

6 205.93~3! 205.78~3!

7 68.738~2! 68.513~2!

8 36.9335~3! 36.6235~3!

9 24.58761~8! 24.20344~7!

10 18.38543~2! 17.93780~2!

12 12.401336~3! 11.852175~2!

15 8.6540358~4! 7.9964587~2!

20 6.13215967~2! 5.36076877~1!

30 4.2989934145~6! 3.4128952554~3!
.

c-

n
pt

e

@M ,L# Padéapproximants withM>8 andL>8, excluding
that whose denominator has zero at some point in 4,q
,`. We have checked that the duality relation~8!, which is
not respected exactly by the Pade´ approximants, is really
satisfied within the accuracy for the whole range ofq.4.
These estimates are more precise by three or four order
magnitude than~and of course consistent with! the previous
result for q>7 from the large-q expansion to orderz10 by
Bhattacharyaet al. @8# and the result forq510,15,20 from
the Monte Carlo simulations carefully done by Janke a
Kappler@9#. What should be emphasized is that we obtain
the values of the specific heat to an accuracy of about 0
at q55, where the correlation length is as large as 2500@4#.
As for the asymptotic behavior ofF (2) at q→4 , the Pade´
data ofFd

(2)/x andFo
(2)/x have relatively large errors of a few

percent aroundq54, but their behaviors shown in Fig. 2 ar
enough to convince us that the conjecture~11! is true with

a50.07360.002. ~13!

The extension of the large-q expansion to the higher
energy cumulants and the magnetization cumulants is ra
straightforward and now in progress, which would also e
able us to investigate the asymptotic behavior of these qu
tities for q→4 .

FIG. 2. Ratio ofF (2) to x plotted versusu. The dashed and
dotted lines represent the errors for the ordered and disord
phases, respectively.
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