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Large-q expansion of the specific heat for the two-dimensionai-state Potts model
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We have calculated the largeexpansion for the specific heat at the phase transition point in the two-
dimensionalg-state Potts model to the 23rd order in/@/using the finite lattice method. The series obtained
allows us to give highly convergent estimates of the specific heaifot on the first-order transition point.
The result confirms the correctness of the conjecture by Bhattachaateg Nucl. Phys. B435 526(1995; J.
Phys. 17, 1155(1997] on the asymptotic behavior of the specific heatder 4. [S1063-651X99)05101-9

PACS numbgs): 05.50+q, 02.30.Mv, 75.10.Hk

The g-state Potts modé¢lL,2] in two dimensions has been finite lattice method we can skip this job and reduce the main
investigated intensively as the test ground for analyzing thevork to the calculation of the expansion of the partition
phase transition in many physical systems. In particular it ifunction for a series of finite size lattices, which can be done
interesting because the order of the phase transion changesing the straightforward site-by-site integrati¢h6,17]
from first order to the second order when the paramgier  without the graphical technique. This method has been used
varied, that is, first order fog>4 and second order fay mainly to generate the low- and high-temperature series in
<4. The amplitudes of many quantities at the first-orderstatistical systems and the strong coupling series in lattice
transition point are known exactly, including the free energy,gauge theory. One of the purposes of this paper is to dem-
the internal energj3], and the correlation lengfl#—6]. The  onstrate that this method is also applicable to the series ex-
correlation length at the transition point increases to infinitypansion with respect to the inverse of the number of degrees
asq—4 and atq=4 the transition becomes second order.of freedom for each local dynamical variable in a physical
Physically important quantities such as the specific heat ansystem. The long series obtained here by the finite lattice
the susceptibility at the transition point, which also increasemethod enables us to examine the conjecture by Bhatta-
to infinity as q—4, are not solved exactly. Bhattacharya charyaet al. on the asymptotic behavior of the specific heat
et al. [7] made a stimulating conjecture on the asymptoticfor g very close to 4. We can also give the estimates of the
behavior of the energy cumulantincluding the specific specific heat for each=5,6,7, . . . that are much more pre-
heaj at the first-order transition point: The asymptotic rela-cise than those given in previous works and they would serve
tion of the energy cumulants and the correlation length at thas a target in investigating this model in various contexts, for
first-order transition point fog— 4 will be equal to the one example, in testing the efficiency of a new algorithm of the
at the second-order phase transition point wjth4 fixed. If ~ numerical simulation.
this conjecture is true not only in theestate Potts model but The model is defined by the partition function
also in general physical systems that have a phase transition
whose order changes from first order to second order when
some parameter of the system is varied, it would give a good _ _
guide in investigating such systems, for instance, the order of Z= % exp—pH),  H= 7% Os Sp? @
the phase transition. Bhattachargaal. [8] also made the
largeq expansion of the energy cumulants to order 1@ in
=1/\/q, with which they could use the conjecture to give thewhere(i,j) represents the pair of nearest neighbor sites and
estimates of the cumulants at the transition pointder7 si=1,2,...». The phase transition poing, is given by
that are better than those given by Other methOdS inCIUdingXpwt)_l: \Fq We will Consider the free energy density in
the Monte Carlo simulationf9] and the low-(and high)  the disordered phase, which is given by
temperature expansionsd0-13. The series obtained by
Bhattacharyeet al. are, however, not long enough to inves-
tigate the behavior of the energy cumulants dazlose to 4. Fa(B)= Ilim (|_X|_y)—1 InZy4(Ly,Ly), 2)

In this paper we will enlarge the larggseries for the Ly Ly—
specific heat at the transition point to order 2%insing the
finite lattice method13-15 instead of the standard graphi-
cal method used by Bhattacharg al. The finite lattice  where the partition function for the, XL, lattice should be
method can in general give longer series than those genetalculated with the free boundary condition corresponding to
ated by the graphical method especially in lower sparel  the disordered phase. The largeexpansion of the partition
time) dimensions. In the graphical method, one has to list alfunction can be given through the Fortuin-Kasteleyn repre-
the relevant diagrams and count how many appear. In theentation18] as
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TABLE |. Largeq expansion coefficientaﬁf) for the second

i X 0—e0 X e i energy cumulant.
x| X
' o X e —e —e | m al? (disorderedl al? (ordered
i X | | | i 0 0 0
' 06— 0 —e0—e | 1 2 0
[ IR 2 14 16
! o — 00— 0 <X o ! 3 26 34
b | | x 4 118 114
e —0—e x e . 5 250 254
T ' 6 894 882
FIG. 1. Example of the cluster consisting of a single polymer 7 1936 1944
that contributes to the lowest-order termwil,,I,) with |, =4 and 8 6160 6128
I,=5. The closed circles are the sites and the solid lines and the 9 13538 13550
crosses are the bonds connecting and disconnecting the nearest 10 39774 39698
neighbor sites, respectively, in the Fortuin-Kasteleyn representa- 11 88360 88360
tion. 12 245188 245036
13 547468 547356
i 14 1457976 1457784
Zo(Lo by =atrgg Ni(e-1'a 15 3264012 3263316
16 8410284 8410596
=quLy2 N, jYIsz_I, 3) 17 18868858 18865590
W] ' 18 47391870 47395762
19 106180532 106166828
whereN; ; is the number of configurations éfoonds con- 20 261607968 261629456
necting the nearest neighbor sites on the< L lattice with 21 536199668 586145660
LXLy—j independent clusters of sites aﬁf@f(eﬁ— 1)/\/6. 22 1415497756 1415594740
(Two sites connected to each other belong to the same clus- 53 3174285456 3174081000

ter)
We define H(ly,l,) for each I,XI, lattice

(Ix.1y=1,23...) as[15] =1+y [19], then we only have to keep the expansion with

respect toy to ordery" to obtain thenth energy cumulant at

H(lx 1y =In[Z4(1x.1y)/a>], (4 the phase transition point as
whereZ(l,l,) is the partition function with the free bound- g
ary condition, and defing(l,,l,) recursively as Fén):dﬁ” Fd(ﬁ)|ﬁzﬁt= ; amzm. @)

W(IXaIy):H(IXva)
[We note that 4/dB)=(1+y+2z)(d/dy) and y=0 at 8

= B;.] We can also calculate the series for the energy cumu-
lant F(" at B, in the ordered phase by using the duality

relation

- 2 (=D U=+ D)WL,
1l<l, Il <l

x X0ty =ly

)

Here the' indicates that a term with =1, andl /=1, should
be excluded in the summation. Then the free energy densit\y\/e have calculated the series to ordes23 in z for n
defined by Eq/(2) is given by =0,1, and 2. The series obtained for the zeroth and first
cumulantg(i.e., the free energy and the internal engragree
with the expansion of the exactly known expressions. The
series for the second cumulants are listed in Table I. The
. fficients forF{?) agree with th Bhattachargaal.
We can proveé 15] that the Taylor expansion a¥(l,l,) fgird(;? fg OrF5™” agree with those by Bhattachargaa
with respect taz andY includes the contribution from all the The Iateﬁt heat: [3] and the correlation length [4—6] at
Clusters of polymer_s in the standard cluster expansion th%e transition point are known, respectively, to vanish and to
can be embedded in thgx|, lattice but cannot be embed- iverge alg—4 as
ded in any of its rectangular sublattices. Each cluster tha(ti ge alg

S ) ®

Fd<ﬁ>=ln<q>+|2I W(ly,ly). (6)
Xy

contributes to the lowest-order term\&f(1 ,1,) consists of a L~3ax— 12 9)
single polymer and is of ordefx'y~2. An example of such '

a single polymer is shown in Fig. 1. Therefore, to obtain the

series to ordeg™ we only have to take into account all the E~ ix, (10)

rectangular lattices that satisfy+1,—2<N. If we setY 812
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TABLE II. Specific heat for some values of 00784 q=>5 q=6 q=7 ¢=8
q Cd Co 0.077 ¢
L disordered |
5 28892) 28863) 0076
6 205.933) 205.7¢3) g 0075
7 68.7382) 68.5132) 50.074
8 36.933%3) 36.62353) 0073 |
9 24.587618) 24.203447)
10 18.3854®) 17.937802) 0972 lordered,
12 12.40133@®) 11.85217%2) 0071 .~
15 8.6540358)) 7.99645872) 0.070 . . . .
20 6.1321596@) 5.36076877L) 0 0z 04 , 06 08 !
30 4.298993414%) 3.412895255(8)

FIG. 2. Ratio of F® to x plotted versusg. The dashed and
dotted lines represent the errors for the ordered and disordered
phases, respectively.

with x=exp@@%26) and 2 cost¥=./q. Bhattacharyaet al.
[7] made the conjecture th& 23 will diverge atqg—4 as [M,L] Padeapproximants withM =8 andL =8, excluding
that whose denominator has zero at some point {ng4
<, We have checked that the duality relati@), which is
not respected exactly by the Padpproximants, is really

satisfied within the accuracy for the whole rangeqof 4.

Fi&~ax. (12)

This is from the fact that fol3— B; with q=4 fixed the

correlation length a”(lztge seco(r;;j cumulantidzixerge, r€SP€&hese estimates are more precise by three or four orders of
tlvelg, asé~NB— B " andF'9~u|B— B """, so that magnitude tharfand of course consistent wjtthe previous
¢/F)~ const, and the assumption that this relation betweenag it forq=7 from the largeg expansion to order® by

the correlation length and the second cumulant is also ke%hattacharyaet al. [8] and the result fog=10,15,20 from

for g—4 with = ;. The constant in Eq. (11) should be o \onte ‘Carlo simulations carefully done by Janke and
common for the ordered and disordered phases from(@Bgs. anpier[g]. What should be emphasized is that we obtained
and (9). Here we follow this conjecture. Then the product ihe yalues of the specific heat to an accuracy of about 0.1%

F()£2? is expected to be a smooth function 6f so we
apply the Padepproximation to this quantity as

FPL2=2Py(2)/QL(2)+O(ZM*-+2),

FPL?=2"Ry(2)/S(2)+O(ZM*-73), (12)
wherePy,(z) andQ, (2)[Ry(z) andS (z)] are theMth- and
Lth-order polynomials withM +L+1<N[M+L+2=<N].
We give in Table Il the values of the specific h€t, evalu-
ated from these Padspproximants for some values gfand
present in Fig. 2 the behavior of the ratiolf) to x plotted

at g=5, where the correlation length is as large as 2B3J0
As for the asymptotic behavior d8(®) at q—4, the Pade
data ofF (?)/x andF ?)/x have relatively large errors of a few
percent around =4, but their behaviors shown in Fig. 2 are
enough to convince us that the conjectté) is true with

a=0.073+0.002. (13

The extension of the largg-expansion to the higher-
energy cumulants and the magnetization cumulants is rather
straightforward and now in progress, which would also en-
able us to investigate the asymptotic behavior of these quan-

versusf. The averages and errors are taken from all theities forg—4.
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